Alexander I. May

細胞生物学研究

Alexander I. May

特任助教

酵母生理学ミトコンドリア細胞生物学

略歴

I’m from Melbourne in Australia, and have been interested in biology ever since I was a child. At my school, we had to study Japanese as a foreign language, which I also found really interesting, and I’ve been studying both ever since. I’m now working in the Ohsumi lab looking at the role autophagy plays in the lives of yeast. I would never have guessed this is what I’d end up doing if you’d asked me a decade ago, but I thoroughly enjoy being able to exercise my passions for both science and Japanese every day.

WRHIへの期待

The WRHI programme has been an excellent opportunity for me to follow my passion for basic research in a stimulating and free environment. The WRHI provides ample facilities and support to conduct research, and I’m now able to focus on my work without too many distractions.

研究プロジェクト

  • The role of autophagy in yeast growth and metabolism.

    I’m trying to understand the role that autophagy plays in yeast cells as they grow and proliferate, especially in response to changing metabolic conditions. Yeast are a great organism to use for this, because it’s easy to manipulate their genes, they grow very quickly, we have a relatively good understanding of how their metabolism works, and it’s also fairly easy to discriminate between the major modes of energy production when they’re growing. I’m interested in particular in the relationship between autophagy and mitochondrial function. To investigate this, I’m using a range of methods, ranging from the evaluation of growth to analysis of protein and RNA degradation and modification throughout different phases of culture.
    Period: 2016 - present
    Members: Member of the Ohsumi lab

    Autophagymitochondriarespirationgrowth

2016-

東京工業大学 科学技術創成研究院 特任助教

2012-2014

東京工業大学 大隅研究室 客員研究員

2011-2016

モナシュ大学 博士課程

2012 - 2014

Prime Minister’s Australia-Asia Postgraduate Award(オーストラリア国政府)

2010

Stuart Stone Medal(Monash大学)

2021

Kusumaatmaja, H., May, A. I., & Knorr, R. L. (2021). Intracellular wetting mediates contacts between liquid compartments and membrane-bound organelles. Journal of Cell Biology, 220(10). https://doi.org/10.1083/JCB.202103175

2021

Kusumaatmaja, H., May, A. I., Feeney, M., McKenna, J. F., Mizushima, N., Frigerio, L., & Knorr, R. L. (2021). Wetting of phase-separated droplets on plant vacuole membranes leads to a competition between tonoplast budding and nanotube formation. Proceedings of the National Academy of Sciences, 118(36). https://doi.org/10.1073/PNAS.2024109118

2021

Schultz, S. W., Agudo-Canalejo, J., Chino, H., Migliano, S. M., Saito, C., Koyama-Honda, I., Stenmark, H., Brech, A., Mizushima, N., Knorr, R. L., & May, A. I. (2021). Should I bend or should I grow: the mechanisms of droplet-mediated autophagosome formation. Autophagy, 17(4), 1046–1048.

2021

Agudo-Canalejo, J., Schultz, S. W., Chino, H., Migliano, S. M., Saito, C., Koyama-Honda, I., Stenmark, H., Brech, A., May, A. I., Mizushima, N., & Knorr, R. L. (2021). Wetting regulates autophagy of phase-separated compartments and the cytosol. Nature, 591(7848), 142–146. https://doi.org/10.1038/s41586-020-2992-3

2020

May, A. I., Prescott, M., & Ohsumi, Y. (2020). Autophagy facilitates adaptation of budding yeast to respiratory growth by recycling serine for one-carbon metabolism. Nature Communications, 11, 5052. https://doi.org/10.1038/s41467-020-18805-x

2020

Fujioka, Y., Alam, J. M., Noshiro, D., Mouri, K., Ando, T., Okada, Y., May, A. I., Knorr, R. L., Suzuki, K., Ohsumi, Y., & Noda, N. N. (2020). Phase separation organizes the site of autophagosome formation. Nature, 578(7794), 301–305. https://doi.org/10.1038/s41586-020-1977-6