Padma Gopalan

Profile
2001      Ph.D. Chemistry, Cornell University, Ithaca, NY, USA
2001-2003     Post-doctoral member of Technical Staff, Bell Labs, Lucent Technologies, NJ, USA
2003-current  Professor, Department of Materials Science and Engineering, University of Wisconsin-Madison, USA
2018-     Specially Appointed Professor, School of Materials and Chemical Technology,Tokyo Institute of Technology

Field of Specialization
(i)main field: Polymer science
(ii)other fields: Materials Science and Engineering, Electronic Materials Chemical Engineering

School of Materials and Chemical Technology(Tokyo Tech)
University of Wisconsin-Madison(U.S.A.)

http://gopalan.msae.wisc.edu/
gopalan.p.aa@m.titech.ac.jp
pgopalan@wisc.edu

Research Hub Group :Materials and Devices international hub group

Research Highlights

  • Developed a new class of coatings to enable self-assembly of block copolymers in thin-films.
  • Developed self-assembling block copolymer materials that can self-assemble in sub-5 nm length scale and also possess the right etch characteristics for pattern transfer.
  • Developed degradable conjugated polymers that can sort semi-conducting single walled carbon nanotubes, can assemble them in arrays and can be removed from devices to maximize performance.

Selected Awards

  • 2016: Vilas Distinguished Achievement Professor, University of Wisconsin-Madison.

  • 2004: National Science Foundation, CAREER award

Selected Publications

  • Photoisomerization Dynamics in a Densely Packed Optically Transformable Azobenzene Monolayer. McElhinny, K. M.; Park, J.; Ahn, Y.; Huang, P.; Joo, Y.; Lakkham, A.; Pateras, H.; Wen, H.; Gopalan, P.; Evans, P. G. Langmuir, 2018, 34 (37), 10828–10836.

  • Self-Assembly of an Ultrahigh-χ Block Copolymer with Versatile Etch Selectivity. Azuma, K.; Sun, J.; Choo, Y.; Rokhlenko, Y.; Dwyer, J. H.; Schweitzer, B.; Hayakawa, T.; Osuji, C. O.; Gopalan, P. Macromolecules, 2018, 51, 6460-6467.

  • Exploring Electronic Structure and Order in Polymers via Single-Particle Microresonator Spectroscopy. Horak, E. H.; Rea, M. T.; Heylman, K. D.; Gelbwaser-Klimovsky, D.; Saikin, S. K.; Thompson, B. J.; Kohler, D. D.; Knapper, K. A.; Wei, W.; Pan, F.; Gopalan, P; Wright, J. C.; Aspuru-Guzik, A.; Goldsmith, R. H. Nano Letters, 2018, 18, 1600-1607.

  • Selective growth of strained (In)GaAs quantum dots on GaAs substrates employing diblock copolymer lithography nanopatterning. Honghyuk Kim, Jonathan Choi, Zachary Lingley, Miles Brodie, Yongkun Sin, Thomas F. Kuech, Padma Gopalan, Luke J. Mawst. Journal of Crystal Growth, 2017, 465, 48–54.

  • Optically Reconfigurable Monolayer of Azobenzene Donor Molecules on Oxide Surfaces. McElhinny, K. M.; Huang, P.; Joo, Y.; Kanimozhi, C.; Lakkham, A.; Sakurai, K.; Evans, P. G.; Gopalan, P. Langmuir, 2017, 33 (9), 2157–2168.

  • Self-Assembly and Post-Fabrication Functionalization of Microphase Separated Thin Films of a Reactive Azlactone-Containing Block Copolymer. Choi, J. W.; Carter, M. C. D.; Wei, W.; Kanimozi, C.; SpeetjensII, F. W.; Mahanthappa, M. K.; Lynn, D. M.; Gopalan, P. Macromolecules, 2016, 49, 8177.

  • Surface functionalization and dynamics of polymeric cell culture substrates. Krutty, J. D.; Schmitt, S. K.; Gopalan, P; Murphy, W. L. Current Opinion in Biotechnology, 2016, 40, 164-169.

  • Quasi-Ballistic Carbon Nanotube Array Transistors with Current Density Exceeding Si and GaAs. Brady, G. J.; Way, A. J.; Safron, N. S.; Evensen, H. T.; Gopalan, P.; Arnold, M. S. Science Advances, 2016, 2, e1601240.

  • Isomeric Effect Enabled Thermally Driven Self-Assembly of Hydroxystyrene-Based Block Copolymers. Kanimozhi, C.; Kim, M.; Larson, S. R.; Choi, J. W.; Choo, Y.; Sweat, D. P.; Osuji, C. O.; Gopalan, P. ACS Macro Lett., 2016, 5, 833-838

  • 10. Effect of Dipolar Molecule Structure on the Mechanism of Graphene-Enhanced Raman Scattering. Joo, Y.; Kim, M.; Kanimozhi, C.; Huang, P.; Wong, B. M.; Roy, S. S.; Arnold, M. S.; Gopalan, P. J. Phys. Chem. C, 2016, 120, 13815-13824.